Selasa, 03 April 2012

Fungsi Kuadrat


BENTUK UMUM

y = f(x) = ax2 + bx + c

x variabel bebas; y variabel tak bebas;
a,b,c konstanta ; a
¹ 0


NILAI EKSTRIM

Bentuk y = ax² + bx + c dapat ditulis menjadi y = a(x+b/2a)² - D/4a

Dapat disimpulkan : y ekstrim = -D/4a yang dicapai bila x = -b/2a

Dapat disimpulkan :

y = a(x - x ekstrim + y ekstrim
Ket: : Fungsi kuadrat mempunyai nilai ekstrim, maksimum atau minimum          tergantung dari nilai a.

Tanda dari a

a Parabola Terbuka Grafik
a > 0 Ke atas
Mempunyai nilai minimum
a < 0 Ke bawah
Mempunyai nilai maksimum
GRAFIK

Grafik fungsi kuadrat adalah sebuah PARABOLA.
Untuk melukiskannya harus diperhatikan

1) TITIK POTONG DENGAN SUMBU-X

    y=O ® ax²+ bx + c = 0 (bentuk Persamaan Kuadrat)

KEMUNGKINAN-KEMUNGKINAN
Diskriminan PK Akar PK Titik Potong Dengan Sumbu x Grafik
D > 0 2 akar berlainan 2 titik potong
D = 0 akar kembar 1 titik potong (titik singgung)
D < 0 tidak ada akar Tidak ada titik potong

2) TITIK POTONG DENGAN SUMBU-Y

x=0 ® y=c ® (0, c)

KEMUNGKINAN-KEMUNGKINAN
c > 0
c < 0
c = 0
memotong sumbu y di atas
memotong sumbu y di bawah
melalui titik (0,0)

3. SUMBU SIMETRI

(Garis sejajar sumbu-y yang menjadikan parabola simetris).

Persamaan sumbu simetri  x = -b/2a

Ket. : Dari sumbu simetri ini dapat ditentukan tanda dari b.

4. TITIK PUNCAK

Puncak (-b/2a , -D/4a)

5. UNTUK MELENGKAPI GRAFIK, DIAMBIL BEBERAPA NILAI X DAN Y     SECUKUPNYA

KOMBINASI TANDA a dan D
a>0
a<0
Ket :
Untuk
D < 0 dan a > 0 Grafik selalu berada di atas sumbu x.
(fungsi selalu bernilai positip / DEFINIT POSITIF).

Untuk D < 0 dan a < 0 Grafik selalu berada di bawah sumbu x.
(fungsi selalu bernilai negatip l DEFINIT NEGATIP).

BENTUK UMUM

y = f(x) = ax2 + bx + c

x variabel bebas; y variabel tak bebas;
a,b,c konstanta ; a
¹ 0


NILAI EKSTRIM

Bentuk y = ax² + bx + c dapat ditulis menjadi y = a(x+b/2a)² - D/4a

Dapat disimpulkan : y ekstrim = -D/4a yang dicapai bila x = -b/2a

Dapat disimpulkan :

y = a(x - x ekstrim + y ekstrim
Ket: : Fungsi kuadrat mempunyai nilai ekstrim, maksimum atau minimum          tergantung dari nilai a.

Tanda dari a

a Parabola Terbuka Grafik
a > 0 Ke atas
Mempunyai nilai minimum
a < 0 Ke bawah
Mempunyai nilai maksimum
GRAFIK

Grafik fungsi kuadrat adalah sebuah PARABOLA.
Untuk melukiskannya harus diperhatikan

1) TITIK POTONG DENGAN SUMBU-X

    y=O ® ax²+ bx + c = 0 (bentuk Persamaan Kuadrat)

KEMUNGKINAN-KEMUNGKINAN
Diskriminan PK Akar PK Titik Potong Dengan Sumbu x Grafik
D > 0 2 akar berlainan 2 titik potong
D = 0 akar kembar 1 titik potong (titik singgung)
D < 0 tidak ada akar Tidak ada titik potong

2) TITIK POTONG DENGAN SUMBU-Y

x=0 ® y=c ® (0, c)

KEMUNGKINAN-KEMUNGKINAN
c > 0
c < 0
c = 0
memotong sumbu y di atas
memotong sumbu y di bawah
melalui titik (0,0)

3. SUMBU SIMETRI

(Garis sejajar sumbu-y yang menjadikan parabola simetris).

Persamaan sumbu simetri  x = -b/2a

Ket. : Dari sumbu simetri ini dapat ditentukan tanda dari b.

4. TITIK PUNCAK

Puncak (-b/2a , -D/4a)

5. UNTUK MELENGKAPI GRAFIK, DIAMBIL BEBERAPA NILAI X DAN Y     SECUKUPNYA

KOMBINASI TANDA a dan D
a>0
a<0
Ket :
Untuk
D < 0 dan a > 0 Grafik selalu berada di atas sumbu x.
(fungsi selalu bernilai positip / DEFINIT POSITIF).

Untuk D < 0 dan a < 0 Grafik selalu berada di bawah sumbu x.
(fungsi selalu bernilai negatip l DEFINIT NEGATIP).

Menentukan Fungsi Kuadrat
Pada umumnya grafik suatu fungsi kuadrat y = ax² + bx + c akan tertentu jika diketahui 3 titik yang dilaluinya. Hal khusus jika melalui titik puncak, cukup diketahui melalui 2 titik saja.



diketahui melalui
misalkan fungsi
1)Tiga titik sembarang (x1,y1) ; (x2,y2) dan (x3,y3) y = ax² + bx + c
(a = ? ; b=? ; c = ?)
2) Titik potong dengan sumbu x
(x1,0) ; (x2,0) serta sebuah titik sembarang (x3,y3)
y = a (x - x1) (x - X2)
( a = ? )
3) Titik Puncak (xp, yp)
dan sebuah titik sembarang (X2,Y2)
Y = a (x - xp)² + yp
( a = ? )

Ket:
Dengan
mensubstitusi titik-titik yang dilalui dan menyelesaikan persamaannya maka nilai a, b dan c yang dibutuhkan dapat dicari, sehingga fungsi kuadrat yang dimaksud dapat ditentukan. 

1 komentar:

Didik Sedyadi mengatakan...

Untuk melengkapi ringkasan tersebut, kunjungi :
edukasi-dari-nol.blogspot.com
Pasti tambah pengetahuan kita deh .......

Posting Komentar

Twitter Delicious Facebook Digg Stumbleupon Favorites More