Tampilkan postingan dengan label Fisika. Tampilkan semua postingan
Tampilkan postingan dengan label Fisika. Tampilkan semua postingan

Minggu, 01 April 2012

DINAMIKA (FISIKA X)

DINAMIKA

Konsep Gaya dan Massa

• Massa adalah materi yang terkandung dalam suatu zat dan
dapat dikatakan sebagai ukuran dari inersia(kelembaman).
• Gaya adalah penyebab terjadi gerakan pada benda.
• Konsep Gaya dan Massa dijelaskan oleh Hukum Newton
  • Hukum I menyatakan “Sebuah benda akan berada dalam keadaan
diam atau bergerak lurus beraturan apabila resultan gaya
yang bekerja pada benda sama dengan nol”.
  • Hukum II menyatakan “Benda akanmengalami percepatan jika
ada gaya yang bekerja pada benda tersebut dimana gaya ini
sebanding dengan suatu kontanta dan percepatannya”
F = ma (1)
atau lebih umum adalah
F =dp/dt=d/dt(mv) = m dv/dt+ vdm/dt
  • Hukum III menyatakan “ Dua benda yang berinteraksi akan timbulgaya pada masing-masing benda tsb yang arahnya berlawanan dan besarnya sama”
~Faksi = −~Freaksi (3)
• Satuan untuk gaya adalah Newton, (N) atau dyne, dan
dimensiMLT−2

Macam-macam Gaya

• Di alam semesta ada 4 gaya yang berpengaruh yaitu gaya Elektromagnetik, gaya Gravitasi, gaya Interaksi Kuat dan gaya Interaksi Lemah
• Gaya interaksi : gaya Gravitasi dan gaya Listrik-Magnetik
• Gaya Kontak : gaya Normal, gaya Gesek dan gaya Tegang Tali Gaya Normal Gaya normal adalah gaya reaksi dari gaya berat yang dikerjakan pada benda terhadap bidang dimana benda itu terletak dan tegak lurus bidang. N = mg; g = percepatan grafitasi.

Gaya Gesek

• Gaya yang melawan gerak relatif antara 2 benda yang bersentuhan.
Gaya gesek ini dapat terjadi pada
  1. gaya gesek antara zat padat dengan zat padat
  2. gaya gesek antara zat cair dengan zat padat
Gaya gesek dipengaruhi oleh beberapa faktor
  • keadaan permukaan
  • kecepatan relatif
  • gaya yang bekerja pada benda tsb
Gaya gesek,~fk dinyatakan
~ fk = μk,sN (5)
  • dengan μk=koefisien gesek kinetik,
  • μs=koefisien gesek statik dan
  • N=gaya normal.
  • Umumnya μk < μs
Sifat-sifat gaya gesek
  1. Gaya gesek maksimum(statik dan kinetik) tidak tergantung pada luas permukaan bidang gesek dan berbanding lurus dengan gaya normal
  2. Gaya gesek kinetik tergantung pada kecepatan relatif antara 2 benda yang bersentuhan

Gaya Tegang Tali

  • Gaya tegang tali adalah gaya yang terjadi pada tali, pegas atau batang yang ujung-ujung dihubungkan dengan bendalain.
  • Gaya tegang tali memenuhi:
T =F = mg

Torka atau Torsi

  • Torka atau momen gaya menyebabkan benda berotasi dan dinyatakan
~τ = ~r × ~F = |~r|| ~F| sin θ
  • Arah momen gaya tergantung perjanjian, umumnya τ > 0searah jarum jam dan τ < 0 berlawanan arah jarum jam.

Pusat Massa dan Titik Berat

- Pusat Massa

  • Pusat Massa adalah titik tangkap dari resultan gaya-gaya berat pada setiap komponen dimana jumlah momen gaya terhadap titik(pusat massa) sama dengan nol.
      Xpm = mixi/mi ; Xpm = ∫xdm/dm

-Titik Berat

  • Titik berat adalah titik yang dilalui oleh garis kerja resultan gaya berat sistem dan merupakan garis potong dari garis kerja gaya berat bila sistem ini berubah-ubah.
Xz = xdW/dW
  • Titik berat dan pusatmassa dapatmempunyai kordinat yang sama atau berhimpit jika benda tsb dekat permukaan bumi.Untuk benda-benda yang jauh dari permukaan bumi titik berat dan pusat massa tidak berhimpit.

Gerak Pusat Massa

  • Gerak pusat massa suatu benda dapat dihubungkan dengan gaya netto yang bekerja pada benda tersebut Secara fisis dapat dijelaskan yaitu gerak sistem partikel dapat diwakili oleh gerak pusat massa dan gaya F ext merupakan gaya netto karena gaya-gaya internal saling meniadakan
  • Untuk memudahkan pemahaman, ambil contoh : Sebuah benda ditembakkan dengan sudut elevasi dan kecepatan awal. Kemudian pada titik tertinggi benda terpecah menjadi2 bagian dimana bagian yang lebih ringan bergerak terus dan bagian yang lebih berat jatuh bebas. Sehingga dapat dinyatakan bahwa setelah benda pecah, pusat massa benda akan terus bergerak melalui lintasannya seolah-olah tidak terpecah akibatnya letak jatuh benda yang ringan dapat diprediksi.

BESARAN DAN SATUAN (FISIKA X)

BESARAN DAN SATUAN (FISIKA X)

Written by akbar sena on Sabtu, 31 Maret 2012 at 23:13
Besaran merupakan segala sesuatu yang dapat diukur dan dinyatakan dengan angka, misalnya panjang, massa, waktu, luas, berat, volume, kecepatan, dll. Warna, indah, cantik, bukan merupakan besaran karena tidak dapat diukur dan dinyatakan dengan angka. Besaran dibagi menjadi dua yaitu besaran pokok dan besaran turunan.
BESARAN POKOK
Besaran Pokok adalah besaran yang satuannya telah ditetapkan terlebih dahulu dan tidak diturunkan dari besaran lain. Ada tujuh besaran pokok dalam sistem Satuan Internasional yaitu Panjang, Massa, Waktu, Suhu, Kuat Arus, Jumlah molekul, Intensitas Cahaya.
Panjang adalah dimensi suatu benda yang menyatakan jarak antar ujung. Panjang dapat dibagi menjadi tinggi, yaitu jarak vertikal, serta lebar, yaitu jarak dari satu sisi ke sisi yang lain, diukur pada sudut tegak lurus terhadap panjang benda. Dalam ilmu fisika dan teknik, kata “panjang” biasanya digunakan secara sinonim dengan “jarak”, dengan simbol “l” atau “L” (singkatan dari bahasa Inggris length).
Massa adalah sifat fisika dari suatu benda, yang secara umum dapat digunakan untuk mengukur banyaknya materi yang terdapat dalam suatu benda. Massa merupakan konsep utama dalam mekanika klasik dan subyek lain yang berhubungan.
Waktu menurut Kamus Besar Bahasa Indonesia (1997) adalah seluruh rangkaian saat ketika proses, perbuatan atau keadaan berada atau berlangsung. Dalam hal ini, skala waktu merupakan interval antara dua buah keadaan/kejadian, atau bisa merupakan lama berlangsungnya suatu kejadian. Tiap masyarakat memilki pandangan yang relatif berbeda tentang waktu yang mereka jalani. Sebagai contoh: masyarakat Barat melihat waktu sebagai sebuah garis lurus (linier). Konsep garis lurus tentang waktu diikuti dengan terbentuknya konsep tentang urutan kejadian. Dengan kata lain sejarah manusia dilihat sebagai sebuah proses perjalanan dalam sebuah garis waktu sejak zaman dulu, zaman sekarang dan zaman yang akan datang. Berbeda dengan masyarakat Barat, masysrakat Hindu melihat waktu sebagai sebuah siklus yang terus berulang tanpa akhir.
Suhu menunjukkan derajat panas benda. Mudahnya, semakin tinggi suhu suatu benda, semakin panas benda tersebut. Secara mikroskopis, suhu menunjukkan energi yang dimiliki oleh suatu benda. Setiap atom dalam suatu benda masing-masing bergerak, baik itu dalam bentuk perpindahan maupun gerakan di tempat berupa getaran. Makin tingginya energi atom-atom penyusun benda, makin tinggi suhu benda tersebut.
Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya. Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya.
Jumlah molekul
Intensitas Cahaya
BESARAN TURUNAN
Besaran turunan adalah besaran yang satuannya diturunkan dari besaran pokok atau besaran yang didapat dari penggabungan besaran-besaran pokok. Contoh besaran turunan adalah Berat, Luas, Volume, Kecepatan, Percepatan, Massa Jenis, Berat jenis, Gaya, Usaha, Daya, Tekanan, Energi Kinetik, Energi Potensial, Momentum, Impuls, Momen inersia, dll. Dalam fisika, selain tujuh besaran pokok yang disebutkan di atas, lainnya merupakan besaran turunan. Besaran Turunan selengkapnya akan dipelajari pada masing-masing pokok bahasan dalam pelajaran fisika.
Untuk lebih memperjelas pengertian besaran turunan, perhatikan beberapa besaran turunan yang satuannya diturunkan dari satuan besaran pokok berikut ini.
Luas = panjang x lebar
= besaran panjang x besaran panjang
= m x m
= m2
Volume = panjang x lebar x tinggi
= besaran panjang x besaran panjang x besaran Panjang
= m x m x m
= m3
Kecepatan = jarak / waktu
= besaran panjang / besaran waktu
= m / s
Notasi Ilmiah
Pengukuran dalam fisika terbentang mulai dari ukuran partikel yang sangat kecil, seperti massa elektron, sampai dengan ukuran yang sangat besar, seperti massa bumi. Penulisan hasil pengukuran benda sangat besar, misalnya massa bumi kira-kira 6.000.000.000 000.000.000.000.000 kg atau hasil pengukuran partikel sangat kecil, misalnya massa sebuah elektron kira-kira 0,000.000.000.000.000.000.000.000.000.000.911 kg memerlukan tempat yang lebar dan sering salah dalam penulisannya. Untuk mengatasi masalah tersebut, kita dapat menggunakan notasi ilmiah atau notasi baku.
Dalam notasi ilmiah, hasil pengukuran dinyatakan sebagai : a, . . . . x 10n
di mana :
a adalah bilangan asli mulai dari 1 – 9
n disebut eksponen dan merupakan bilangan bulat dalam persamaan tersebut,
10n disebut orde besar
Contoh :
Massa bumi = 5,98 x1024
Massa elektron = 9,1 x 10-31
0,00000435 = 4,35 x 10-6
345000000 = 3,45×108
Dimensi Besaran
Dimensi besaran diwakili dengan simbol, misalnya M, L, T yang mewakili massa (mass), panjang (length) dan waktu (time). Ada dua macam dimensi yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan panjang) dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua Besaran Turunan yang dinyatakan dalam Dimensi Primer. Contoh : Dimensi Gaya : M L T-2 atau dimensi Percepatan : L
Catatan :
Semua besaran dalam mekanika dapat dinyatakan dengan tiga besaran pokok (Dimensi Primer) yaitu panjang, massa dan waktu. Sebagaimana terdapat Satuan Besaran Turunan yang diturunkan dari Satuan Besaran Pokok, demikian juga terdapat Dimensi Primer dan Dimensi Sekunder yang diturunkan dari Dimensi Primer.

Manfaat Dimensi dalam Fisika antara lain : (1) dapat digunakan untuk membuktikan dua besaran sama atau tidak. Dua besaran sama jika keduanya memiliki dimensi yang sama atau keduanya termasuk besaran vektor atau skalar, (2) dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar, (3) dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui.
Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.
ANALISIS DIMENSI
Analisis dimensi adalah cara yang sering dipakai dalam fisika, kimia dan teknik untuk memahami keadaan fisis yang melibatkan besaran yang berbeda-beda. Analisis dimensi selalu digunakan untuk memeriksa ketepatan penurunan persamaan. Misalnya, jika suatu besaran fisis memiliki satuan massa dibagi satuan volume namun persamaan hasil penurunan hanya memuat satuan massa, persamaan tersebut tidak tepat. Hanya besaran-besaran berdimensi sama yang dapat saling ditambahkan, dikurangkan atau disamakan. Jika besaran-besaran berbeda dimensi terdapat di dalam persamaan dan satu sama lain dibatasi tanda “+” atau “-” atau “=”, persamaan tersebut harus dikoreksi terlebih dahulu sebelum digunakan. Jika besaran-besaran berdimensi sama maupun berbeda dikalikan atau dibagi, dimensi besaran-besaran tersebut juga terkalikan atau terbagi. Jika besaran berdimensi dipangkatkan, dimensi besaran tersebut juga dipangkatkan.
Seringkali kita dapat menentukan bahwa suatu rumus salah hanya dengan melihat dimensi atau satuan dari kedua ruas persamaan. Sebagai contoh, ketika kita menggunakan rumus A= 2.Phi.r untuk menghitung luas. Dengan melihat dimensi kedua ruas persamaan, yaitu [A] = L2 dan [2.phi.r] = L kita dengan cepat dapat menyatakan bahwa rumus tersebut salah karena dimensi kedua ruasnya tidak sama. Tetapi perlu diingat, jika kedua ruas memiliki dimensi yang sama, itu tidak berarti bahwa rumus tersebut benar. Hal ini disebabkan pada rumus tersebut mungkin terdapat suatu angka atau konstanta yang tidak memiliki dimensi, misalnya Ek = 1/2 mv2 , di mana 1/2 tidak bisa diperoleh dari analisis dimensi.
Anda harus ingat karena dalam suatu persamaan mungkin muncul angka tanpa dimensi, maka angka tersebut diwakili dengan suatu konstanta tanpa dimensi, misalnya konstanta k.
Contoh Soal : menentukan dimensi suatu besaran
Tentukan dimensi dari besaran-besaran berikut ini :
(a) volum
(b) massa jenis
(c) pecepatan
(d) usaha
Anda harus menulis rumus dari besaran turunan yang akan ditentukan dimensinya terlebih dahulu. Selanjutnya rumus tersebut diuraikan sampai hanya terdiri dari besaran pokok.
Jawaban :
(a) Persamaan Volum adalah hasil kali panjang, lebar dan tinggi di mana ketiganya memiliki dimensi panjang, yakni [L]. Dengan demikian, Dimensi Volume :
(b) Persamaan Massa Jenis adalah hasil bagi massa dan volum. Massa memiliki dimensi [M] dan volum memiliki dimensi [L]3. Dengan demikian Dimensi massa jenis :
(c) Persamaan Percepatan adalah hasil bagi Kecepatan (besaran turunan) dengan Waktu, di mana Kecepatan adalah hasil bagi Perpindahan dengan Waktu. Oleh karena itu, kita terlebih dahulu menentukan dimensi Kecepatan, kemudian dimensi Percepatan.
(d) Persamaan Usaha adalah hasil kali Gaya (besaran Turunan) dan Perpindahan (dimensi = [L]), sedang Gaya adalah hasil kali massa (dimensi = [M]) dengan percepatan (besaran turunan). Karena itu kita tentukan dahulu dimensi Percepatan (lihat (c)), kemudian dimensi Gaya dan terakhir dimensi Usaha.
SKALAR  dan  VEKTOR
Besaran-besaran Fisika  ditinjau dari pengaruh arah terhadap besaran tersebut dapat dikelompokkan menjadi  :
a.  Skalar : besaran yang cukup dinyatakan besarnya saja (tidak ter-gantung pada arah). Misalnya : massa, waktu, energi dsb.
b. Vektor : besaran yang tergantung pada arah. Misalnya : kecepatan, gaya, momentum dsb.
2. Notasi Vektor.
2.1. Notasi Geometris.
2.1.a.   Penamaan sebuah vektor :
dalam cetakan           : dengan huruf tebal :  a, B, d.
dalam tulisan tangan : dengan tanda ¾ atau ® diatas huruf  :  a , B,  d.
2.1.b.Penggambaran vektor :
vektor digambar dengan anak panah :
B
a                                                        d
panjang anak panah : besar vektor.
arah anak panah          : arah vektor
2.2. Notasi Analitis
Notasi analitis digunakan untuk menganalisa vektor tanpa menggunakan gambar.  Sebuah vektor a dapat dinyatakan dalam komponen-komponennya sebagai berikut :
z
y
k
ay I              j                       y
a
x
ax x
ay : besar komponen vektor a dalam arah sumbu y
ax : besar komponen vektor a dalam arah sumbu x
Dalam koordinat kartesian :
vektor arah /vektor satuan : adalah vektor yang besarnya 1 dan arahnya sesuai dengan yang didefinisikan. Misalnya dalam koordinat kartesian : i, j, k. yang masing masing menyatakan vektor dengan arah sejajar sumbu x, sumbu y dan sumbu z.
Sehingga vektor a dapat ditulis :
a = ax i + ay j
dan besar vektor a adalah :
a = Ö ax 2 +  ay 2
3. OPERASI VEKTOR
3.1. Operasi penjumlahan



A
B
A + B = ?
Tanda + dalam penjumlahan vektor mempunyai arti dilanjutkan.
Jadi A + B mempunyai arti vektor A dilanjutkan oleh vektor B.
B
A
A+B
Dalam operasi penjumlahan berlaku :
a. Hukum komutatif
B
A                                                                  A + B = B + A
A
B
b. Hukum Asosiatif
B                                                          (A + B) + C = A + (B + C)
A
C
Opersai pengurangan dapat dijabarkan dari opersai penjumlahan dengan menyatakan negatif dari suatu vektor.










A                   -A
B
B – A = B + (-A)
B
B-A                             -A
Vektor secara analitis dapat dinyatakan dalam bentuk :
A = Ax i + Ay j + Az k dan
B = Bx i + By j + Bz k
maka opersasi penjumlahan/pengurangan dapat dilakukan dengan cara menjumlah/mengurangi komponen-komponennya yang searah.
A + B = (Ax + Bx) i + (Ay + By) j + (Az + Bz) k
A – B = (Ax – Bx) i + (Ay – By) j + (Az – Bz) k
3.2. Opersai Perkalian
3.2.1. Perkalian vektor dengan skalar
Contoh perkalian besaran vektor dengan skalar dalam fisika : F = ma, p = mv, dsb dimana m : skalar dan a,v : vektor.
Bila misal A dan B adalah vektor dan k adalah skalar maka,
B = k A
Besar vektor B adalah k kali besar vektor A sedangkan arah vektor B sama dengan arah vektor A bila k positip dan berla-wanan bila k negatip. Contoh : F = qE, q adalah muatan listrik dapat bermuatan positip atau negatip sehingga arah F tergantung tanda muatan tersebut.
3.2.2. Perkalian vektor dengan vektor.
a. Perkalian dot (titik)
Contoh dalam Fisika perkalian dot ini adalah : W = F . s,
P = F . v,  F = B . A.
Hasil dari perkalian ini berupa skalar.
A        
q
B
Bila C adalah skalar maka
C = A . B = A B cos q
atau dalam notasi vektor
C = A . B = Ax Bx + Ay By + Az Bz
Bagaimana sifat komutatif dan distributuf dari perkalian dot
b. Perkalian cross (silang)
Contoh dalam Fisika perkalian silang adalah : t = r x F,
F = q v x B, dsb
Hasil dari perkalian ini berupa vektor.
Bila C merupakan besar vektor C, maka
C = A x B = A B sin q
atau dalam notasi vektor diperoleh :
A x B = (AyBz – Az By) i + (AzBx – AxBz) j + (AxBy – AyBx) k
Karena hasil yang diperoleh berupa vektor maka arah dari vektor tersebut dapat dicari dengan arah maju sekrup yang diputar dari vektor pertama ke vektor kedua.
k
j
i
i x j = k                                                   j x j = 1 . 1 cos 90 = 0
k x j = – I dsb
Bagaimana sifat komutatif dan distributif dari perkalian cross

RINGKASAN MATERI FISIKA SMA
BESARAN DAN SATUAN
Besaran merupakan segala sesuatu yang dapat diukur dan dinyatakan dengan angka, misalnya panjang, massa, waktu, luas, berat, volume, kecepatan, dll. Warna, indah, cantik, bukan merupakan besaran karena tidak dapat diukur dan dinyatakan dengan angka. Besaran dibagi menjadi dua yaitu besaran pokok dan besaran turunan.
BESARAN POKOK
Besaran Pokok adalah besaran yang satuannya telah ditetapkan terlebih dahulu dan tidak diturunkan dari besaran lain. Ada tujuh besaran pokok dalam sistem Satuan Internasional yaitu Panjang, Massa, Waktu, Suhu, Kuat Arus, Jumlah molekul, Intensitas Cahaya.
Panjang adalah dimensi suatu benda yang menyatakan jarak antar ujung. Panjang dapat dibagi menjadi tinggi, yaitu jarak vertikal, serta lebar, yaitu jarak dari satu sisi ke sisi yang lain, diukur pada sudut tegak lurus terhadap panjang benda. Dalam ilmu fisika dan teknik, kata “panjang” biasanya digunakan secara sinonim dengan “jarak”, dengan simbol “l” atau “L” (singkatan dari bahasa Inggris length).
Massa adalah sifat fisika dari suatu benda, yang secara umum dapat digunakan untuk mengukur banyaknya materi yang terdapat dalam suatu benda. Massa merupakan konsep utama dalam mekanika klasik dan subyek lain yang berhubungan.
Waktu menurut Kamus Besar Bahasa Indonesia (1997) adalah seluruh rangkaian saat ketika proses, perbuatan atau keadaan berada atau berlangsung. Dalam hal ini, skala waktu merupakan interval antara dua buah keadaan/kejadian, atau bisa merupakan lama berlangsungnya suatu kejadian. Tiap masyarakat memilki pandangan yang relatif berbeda tentang waktu yang mereka jalani. Sebagai contoh: masyarakat Barat melihat waktu sebagai sebuah garis lurus (linier). Konsep garis lurus tentang waktu diikuti dengan terbentuknya konsep tentang urutan kejadian. Dengan kata lain sejarah manusia dilihat sebagai sebuah proses perjalanan dalam sebuah garis waktu sejak zaman dulu, zaman sekarang dan zaman yang akan datang. Berbeda dengan masyarakat Barat, masysrakat Hindu melihat waktu sebagai sebuah siklus yang terus berulang tanpa akhir.
Suhu menunjukkan derajat panas benda. Mudahnya, semakin tinggi suhu suatu benda, semakin panas benda tersebut. Secara mikroskopis, suhu menunjukkan energi yang dimiliki oleh suatu benda. Setiap atom dalam suatu benda masing-masing bergerak, baik itu dalam bentuk perpindahan maupun gerakan di tempat berupa getaran. Makin tingginya energi atom-atom penyusun benda, makin tinggi suhu benda tersebut.
Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya. Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya.
Jumlah molekul
Intensitas Cahaya
BESARAN TURUNAN
Besaran turunan adalah besaran yang satuannya diturunkan dari besaran pokok atau besaran yang didapat dari penggabungan besaran-besaran pokok. Contoh besaran turunan adalah Berat, Luas, Volume, Kecepatan, Percepatan, Massa Jenis, Berat jenis, Gaya, Usaha, Daya, Tekanan, Energi Kinetik, Energi Potensial, Momentum, Impuls, Momen inersia, dll. Dalam fisika, selain tujuh besaran pokok yang disebutkan di atas, lainnya merupakan besaran turunan. Besaran Turunan selengkapnya akan dipelajari pada masing-masing pokok bahasan dalam pelajaran fisika.
Untuk lebih memperjelas pengertian besaran turunan, perhatikan beberapa besaran turunan yang satuannya diturunkan dari satuan besaran pokok berikut ini.
Luas = panjang x lebar
= besaran panjang x besaran panjang
= m x m
= m2
Volume = panjang x lebar x tinggi
= besaran panjang x besaran panjang x besaran Panjang
= m x m x m
= m3
Kecepatan = jarak / waktu
= besaran panjang / besaran waktu
= m / s
Notasi Ilmiah
Pengukuran dalam fisika terbentang mulai dari ukuran partikel yang sangat kecil, seperti massa elektron, sampai dengan ukuran yang sangat besar, seperti massa bumi. Penulisan hasil pengukuran benda sangat besar, misalnya massa bumi kira-kira 6.000.000.000 000.000.000.000.000 kg atau hasil pengukuran partikel sangat kecil, misalnya massa sebuah elektron kira-kira 0,000.000.000.000.000.000.000.000.000.000.911 kg memerlukan tempat yang lebar dan sering salah dalam penulisannya. Untuk mengatasi masalah tersebut, kita dapat menggunakan notasi ilmiah atau notasi baku.
Dalam notasi ilmiah, hasil pengukuran dinyatakan sebagai : a, . . . . x 10n
di mana :
a adalah bilangan asli mulai dari 1 – 9
n disebut eksponen dan merupakan bilangan bulat dalam persamaan tersebut,
10n disebut orde besar
Contoh :
Massa bumi = 5,98 x1024
Massa elektron = 9,1 x 10-31
0,00000435 = 4,35 x 10-6
345000000 = 3,45×108
Dimensi Besaran
Dimensi besaran diwakili dengan simbol, misalnya M, L, T yang mewakili massa (mass), panjang (length) dan waktu (time). Ada dua macam dimensi yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan panjang) dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua Besaran Turunan yang dinyatakan dalam Dimensi Primer. Contoh : Dimensi Gaya : M L T-2 atau dimensi Percepatan : L
Catatan :
Semua besaran dalam mekanika dapat dinyatakan dengan tiga besaran pokok (Dimensi Primer) yaitu panjang, massa dan waktu. Sebagaimana terdapat Satuan Besaran Turunan yang diturunkan dari Satuan Besaran Pokok, demikian juga terdapat Dimensi Primer dan Dimensi Sekunder yang diturunkan dari Dimensi Primer.
Berikut adalah tabel yang menunjukkan dimensi dan satuan tujuh besaran dasar dalam sistem SI.
Manfaat Dimensi dalam Fisika antara lain : (1) dapat digunakan untuk membuktikan dua besaran sama atau tidak. Dua besaran sama jika keduanya memiliki dimensi yang sama atau keduanya termasuk besaran vektor atau skalar, (2) dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar, (3) dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui.
Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.
ANALISIS DIMENSI
Analisis dimensi adalah cara yang sering dipakai dalam fisika, kimia dan teknik untuk memahami keadaan fisis yang melibatkan besaran yang berbeda-beda. Analisis dimensi selalu digunakan untuk memeriksa ketepatan penurunan persamaan. Misalnya, jika suatu besaran fisis memiliki satuan massa dibagi satuan volume namun persamaan hasil penurunan hanya memuat satuan massa, persamaan tersebut tidak tepat. Hanya besaran-besaran berdimensi sama yang dapat saling ditambahkan, dikurangkan atau disamakan. Jika besaran-besaran berbeda dimensi terdapat di dalam persamaan dan satu sama lain dibatasi tanda “+” atau “-” atau “=”, persamaan tersebut harus dikoreksi terlebih dahulu sebelum digunakan. Jika besaran-besaran berdimensi sama maupun berbeda dikalikan atau dibagi, dimensi besaran-besaran tersebut juga terkalikan atau terbagi. Jika besaran berdimensi dipangkatkan, dimensi besaran tersebut juga dipangkatkan.
Seringkali kita dapat menentukan bahwa suatu rumus salah hanya dengan melihat dimensi atau satuan dari kedua ruas persamaan. Sebagai contoh, ketika kita menggunakan rumus A= 2.Phi.r untuk menghitung luas. Dengan melihat dimensi kedua ruas persamaan, yaitu [A] = L2 dan [2.phi.r] = L kita dengan cepat dapat menyatakan bahwa rumus tersebut salah karena dimensi kedua ruasnya tidak sama. Tetapi perlu diingat, jika kedua ruas memiliki dimensi yang sama, itu tidak berarti bahwa rumus tersebut benar. Hal ini disebabkan pada rumus tersebut mungkin terdapat suatu angka atau konstanta yang tidak memiliki dimensi, misalnya Ek = 1/2 mv2 , di mana 1/2 tidak bisa diperoleh dari analisis dimensi.
Anda harus ingat karena dalam suatu persamaan mungkin muncul angka tanpa dimensi, maka angka tersebut diwakili dengan suatu konstanta tanpa dimensi, misalnya konstanta k.
Contoh Soal : menentukan dimensi suatu besaran
Tentukan dimensi dari besaran-besaran berikut ini :
(a) volum
(b) massa jenis
(c) pecepatan
(d) usaha
Anda harus menulis rumus dari besaran turunan yang akan ditentukan dimensinya terlebih dahulu. Selanjutnya rumus tersebut diuraikan sampai hanya terdiri dari besaran pokok.
Jawaban :
(a) Persamaan Volum adalah hasil kali panjang, lebar dan tinggi di mana ketiganya memiliki dimensi panjang, yakni [L]. Dengan demikian, Dimensi Volume :
(b) Persamaan Massa Jenis adalah hasil bagi massa dan volum. Massa memiliki dimensi [M] dan volum memiliki dimensi [L]3. Dengan demikian Dimensi massa jenis :
(c) Persamaan Percepatan adalah hasil bagi Kecepatan (besaran turunan) dengan Waktu, di mana Kecepatan adalah hasil bagi Perpindahan dengan Waktu. Oleh karena itu, kita terlebih dahulu menentukan dimensi Kecepatan, kemudian dimensi Percepatan.
(d) Persamaan Usaha adalah hasil kali Gaya (besaran Turunan) dan Perpindahan (dimensi = [L]), sedang Gaya adalah hasil kali massa (dimensi = [M]) dengan percepatan (besaran turunan). Karena itu kita tentukan dahulu dimensi Percepatan (lihat (c)), kemudian dimensi Gaya dan terakhir dimensi Usaha.
SKALAR  dan  VEKTOR
Besaran-besaran Fisika  ditinjau dari pengaruh arah terhadap besaran tersebut dapat dikelompokkan menjadi  :
a.  Skalar : besaran yang cukup dinyatakan besarnya saja (tidak ter-gantung pada arah). Misalnya : massa, waktu, energi dsb.
b. Vektor : besaran yang tergantung pada arah. Misalnya : kecepatan, gaya, momentum dsb.
2. Notasi Vektor.
2.1. Notasi Geometris.
2.1.a.   Penamaan sebuah vektor :
dalam cetakan           : dengan huruf tebal :  a, B, d.
dalam tulisan tangan : dengan tanda ¾ atau ® diatas huruf  :  a , B,  d.
2.1.b.Penggambaran vektor :
vektor digambar dengan anak panah :
B
a                                                        d
panjang anak panah : besar vektor.
arah anak panah          : arah vektor
2.2. Notasi Analitis
Notasi analitis digunakan untuk menganalisa vektor tanpa menggunakan gambar.  Sebuah vektor a dapat dinyatakan dalam komponen-komponennya sebagai berikut :
z
y
k
ay I              j                       y
a
x
ax x
ay : besar komponen vektor a dalam arah sumbu y
ax : besar komponen vektor a dalam arah sumbu x
Dalam koordinat kartesian :
vektor arah /vektor satuan : adalah vektor yang besarnya 1 dan arahnya sesuai dengan yang didefinisikan. Misalnya dalam koordinat kartesian : i, j, k. yang masing masing menyatakan vektor dengan arah sejajar sumbu x, sumbu y dan sumbu z.
Sehingga vektor a dapat ditulis :
a = ax i + ay j
dan besar vektor a adalah :
a = Ö ax 2 +  ay 2
3. OPERASI VEKTOR
3.1. Operasi penjumlahan



A
B
A + B = ?
Tanda + dalam penjumlahan vektor mempunyai arti dilanjutkan.
Jadi A + B mempunyai arti vektor A dilanjutkan oleh vektor B.
B
A
A+B
Dalam operasi penjumlahan berlaku :
a. Hukum komutatif
B
A                                                                  A + B = B + A
A
B
b. Hukum Asosiatif
B                                                          (A + B) + C = A + (B + C)
A
C
Opersai pengurangan dapat dijabarkan dari opersai penjumlahan dengan menyatakan negatif dari suatu vektor.










A                   -A
B
B – A = B + (-A)
B
B-A                             -A
Vektor secara analitis dapat dinyatakan dalam bentuk :
A = Ax i + Ay j + Az k dan
B = Bx i + By j + Bz k
maka opersasi penjumlahan/pengurangan dapat dilakukan dengan cara menjumlah/mengurangi komponen-komponennya yang searah.
A + B = (Ax + Bx) i + (Ay + By) j + (Az + Bz) k
A – B = (Ax – Bx) i + (Ay – By) j + (Az – Bz) k
3.2. Opersai Perkalian
3.2.1. Perkalian vektor dengan skalar
Contoh perkalian besaran vektor dengan skalar dalam fisika : F = ma, p = mv, dsb dimana m : skalar dan a,v : vektor.
Bila misal A dan B adalah vektor dan k adalah skalar maka,
B = k A
Besar vektor B adalah k kali besar vektor A sedangkan arah vektor B sama dengan arah vektor A bila k positip dan berla-wanan bila k negatip. Contoh : F = qE, q adalah muatan listrik dapat bermuatan positip atau negatip sehingga arah F tergantung tanda muatan tersebut.
3.2.2. Perkalian vektor dengan vektor.
a. Perkalian dot (titik)
Contoh dalam Fisika perkalian dot ini adalah : W = F . s,
P = F . v,  F = B . A.
Hasil dari perkalian ini berupa skalar.
A        
q
B
Bila C adalah skalar maka
C = A . B = A B cos q
atau dalam notasi vektor
C = A . B = Ax Bx + Ay By + Az Bz
Bagaimana sifat komutatif dan distributuf dari perkalian dot
b. Perkalian cross (silang)
Contoh dalam Fisika perkalian silang adalah : t = r x F,
F = q v x B, dsb
Hasil dari perkalian ini berupa vektor.
Bila C merupakan besar vektor C, maka
C = A x B = A B sin q
atau dalam notasi vektor diperoleh :
A x B = (AyBz – Az By) i + (AzBx – AxBz) j + (AxBy – AyBx) k
Karena hasil yang diperoleh berupa vektor maka arah dari vektor tersebut dapat dicari dengan arah maju sekrup yang diputar dari vektor pertama ke vektor kedua.
k
j
i
i x j = k                                                   j x j = 1 . 1 cos 90 = 0
k x j = – I dsb

LISTRIK DINAMIS (FISIKA X)

LISTRIK DINAMIS (FISIKA X)

Written by akbar sena on Sabtu, 31 Maret 2012 at 23:23
Listrik Dinamis adalah listrik yang dapat bergerak. cara mengukur kuat arus pada listrik dinamis adalah muatan listrik dibagai waktu dengan satuan muatan listrik adalah coulumb dan satuan waktu adalah detik. kuat arus pada rangkaian bercabang sama dengan kuata arus yang masuk sama dengan kuat arus yang keluar. sedangkan pada rangkaian seri kuat arus tetap sama disetiap ujung-ujung hambatan. Sebaliknya tegangan berbeda pada hambatan. pada rangkaian seri tegangan sangat tergantung pada hambatan, tetapi pada rangkaian bercabang tegangan tidak berpengaruh pada hambatan. semua itu telah dikemukakan oleh hukum kirchoff yang berbunyi "jumlah kuat arus listrik yang masuk sama dengan jumlah kuat arus listrik yang keluar". berdasarkan hukum ohm dapat disimpulkan cara mengukur tegangan listrik adalah kuat arus × hambatan. Hambatan nilainya selalu sama karena tegangan sebanding dengan kuat arus. tegangan memiliki satuan volt(V) dan kuat arus adalah ampere (A) serta hambatan adalah ohm.

Hukum Ohm

Gambar:ohm1.jpg
Aliran arus listrik dalam suatu rangkaian tidak berakhir pada alat listrik. tetapi melingkar kernbali ke sumber arus. Pada dasarnya alat listrik bersifat menghambat alus listrik. Hubungan antara arus listrik, tegangan, dan hambatan dapat diibaratkan seperti air yang mengalir pada suatu saluran. Orang yang pertama kali meneliti hubungan antara arus listrik, tegangan. dan hambatan adalah Georg Simon Ohm (1787-1854) seorang ahli fisika Jerman. Hubungan tersebut lebih dikenal dengan sebutan hukum Ohm.
Setiap arus yang mengalir melalui suatu penghantar selalu mengalami hambatan. Jika hambatan listrik dilambangkan dengan R. beda potensial V, dan kuat arus I, hubungan antara R, V, dan I secara matematis dapat ditulis:
Gambar:ohm.jpg
Sebuah penghantar dikatakan mempunyai nilai hambatan 1 Ω jika tegangan 1 V di antara kedua ujungnya mampu mengalirkan arus listrik sebesar 1 A melalui konduktor itu. Data-data percobaan hukum Ohm dapat ditampilkan dalam bentuk grafik seperti gambar di samping. Pada pelajaran Matematika telah diketahui bahwa kemiringan garis merupakan hasil bagi nilai-nilai pada sumbu vertikal (ordinat) oleh nilai-nilai yang bersesuaian pada sumbu horizontal (absis). Berdasarkan grafik, kemiringan garis adalah α = V/T Kemiringan ini tidak lain adalah nilai hambatan (R). Makin besar kemiringan berarti hambatan (R) makin besar. Artinya, jika ada suatu bahan dengan kemiringan grafik besar. bahan tersebut makin sulit dilewati arus listrik. Komponen yang khusus dibuat untuk menghambat arus listrik disebut resistor (pengharnbat). Sebuah resistor dapat dibuat agar mempunyai nilai hambatan tertentu. Jika dipasang pada rangkaian sederhana, resistor berfungsi untuk mengurangi kuat arus. Namun, jika dipasang pada rangkaian yang
rumit, seperti radio, televisi, dan komputer, resistor dapat berfungsi sebagai pengatur kuat arus. Dengan demikian, komponen-komponen dalam rangkaian itu dapat berfungsi dengan baik. Resistor sederhana dapat dibuat dari bahan nikrom (campuran antara nikel, besi. krom, dan karbon). Selain itu, resistor juga dapat dibuat dari bahan karbon. Nilai hambatan suatu resistor dapat diukur secara langsung dengan ohmmeter. Biasanya, ohmmeter dipasang hersama-sama dengan amperemeter dan voltmeter dalam satu perangkat yang disebut multimeter. Selain dengan ohmmeter, nilai hambatan resistor dapat diukur secara tidak langsung dengan metode amperemeter voltmeter.

Hambatan Kawat Penghantar

Berdasarkan percobaan di atas. dapat disimpulkan bahwa besar hambatan suatu kawat penghantar 1. Sebanding dengan panjang kawat penghantar. artinya makin panjang penghantar, makin besar hambatannya, 2. Bergantung pada jenis bahan kawat (sebanding dengan hambatan jenis kawat), dan 3. berbanding terbalik dengan luas penampang kawat, artinya makin kecil luas penampang, makin besar hambatannya. Jika panjang kawat dilambangkan ℓ, hambatan jenis ρ, dan luas penampang kawat A. Secara matematis, besar hambatan kawat dapat ditulis :


Gambar:kawat.jpg
Nilai hambatan suatu penghantar tidak bergantung pada beda potensialnya. Beda potensial hanya dapat mengubah kuat arus yang melalui penghantar itu. Jika penghantar yang dilalui sangat panjang, kuat arusnya akan berkurang. Hal itu terjadi karena diperlukan energi yang sangat besar untuk mengalirkan arus listrik pada penghantar panjang. Keadaan seperti itu dikatakan tegangan listrik turun. Makin panjang penghantar, makin besar pula penurunan tegangan listrik.
Gambar:hambatan.jpg

Hukum Kirchoff

Arus listrik yang melalui suatu penghantar dapat kita pandang sebagai aliran air sungai. Jika sungai tidak bercabang, jumlah air di setiap tempat pada sungai tersebut sama. Demikian halnya dengan arus listrik.
Gambar:hkirchoff.jpg
Jumlah kuat arus yang masuk ke suatu titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan tersebut. Pernyataan itu sering dikenal sebagai hukum I Kirchhoff karena dikemukakan pertama kali oleh Kirchhoff.
Maka diperoleh persamaan :
I1 + I2 = I3 + I4 + I5
I masuk = I keluar

Rangkaian Hambatan

  • Rangkaian Seri
Berdasarkan hukum Ohm: V = IR, pada hambatan R1 terdapat teganganV1 =IR1 dan pada hambatan R2 terdapat tegangan V2 = IR 2. Karena arus listrik mengalir melalui hambatan R1 dan hambatan R2, tegangan totalnya adalah VAC = IR1 + IR2.
Mengingat VAC merupakan tegangan total dan kuat arus listrik yang mengalir pada rangkaian seperti di atas (rangkaian tak bercabang) di setiap titik sama maka
VAC = IR1 + IR2
I R1 = I(R1 + R2)
R1 = R1 + R2 ; R1 = hambatan total
Rangkaian seperti di atas disebut rangkaian seri. Selanjutnya, R1 ditulis Rs (R seri) sehingga Rs = R1 + R2 +...+Rn, dengan n = jumlah resistor. Jadi, jika beberapa buah hambatan dirangkai secara seri, nilai hambatannya bertambah besar. Akibatnya, kuat arus yang mengalir makin kecil. Hal inilah yang menyebabkan nyala lampu menjadi kurang terang (agak redup) jika dirangkai secara seri. Makin banyak lampu yang dirangkai secara seri, nyalanya makin redup. Jika satu lampu mati (putus), lampu yang lain padam.
  • Rangakaian Paralel
Mengingat hukum Ohm: I = V/R dan I = I1+ I2, maka
Gambar:paralel1.jpg
Pada rangkaian seperti di atas (rangkaian bercabang), V AB =V1 = V2 = V. Dengan demikian, diperoleh persamaan
Gambar:paralel2.jpg
Rangkaian yang menghasilkan persamaan seperti di atas disebut rangkaian paralel. Oleh karena itu, selanjutnya Rt ditulis Rp (Rp = R paralel). Dengan demikian, diperoleh persamaan Gambar:paralel3.jpg
Berdasarkan persamaan di atas, dapat disimpulkan bahwa dalam rangkaian paralel, nilai hambatan total (Rp) lebih kecil dari pada nilai masing-masing hambatan penyusunnya (R1 dan R2). Oleh karena itu, beberapa lampu yang disusun secara paralel sama terangnya dengan lampu pada intensitas normal (tidak mengalami penurunan). Jika salah satu lampu mati (putus), lampu yang lain tetap menyala.

Twitter Delicious Facebook Digg Stumbleupon Favorites More